Also, some of the individually identified correlations confirmed findings of other research groups [7]. AT-genotypes were clustered according to their genetic similarity, using the eBURST algorithm on the 14 AT-markers designed for genotyping (13 SNPs and fliCa/fliCb) [15]. By excluding the exoU and exoS markers, 3 clones
collapsed into others, precisely clones F468 into F469 and EC28, EC29 into EC2A (see Figure 3). Figure 3 Cluster of AT-clones identified within the 124 independent isolates of our P.aeruginosa collection. Cluster of clones were identified by using the eBURST algorithm performed on 13 SNPs plus the multiallelic fliCa/fliCb gene. The colour code indicates for each genotype the % of isolates
associated to CF patients, patients from the intensive care unit (ICU) or other selleck inhibitor hospital units (OTHERS). Novel clones (not described in other studies) are highlighted by a rectangular box. Focusing on chronic associated isolates, the 4B9A AT-genotype belonged to the largest AT clonal complex and correlated to chronic infections, being 88.9% of its isolates collected from CF patients (see Figure 2), in contradiction with other collections in which this AT-genotype was described within keratitis, environmental and COPD samples [14, 15, 17]. As for the 4B9A AT-genotype, EC2A, known as CHA strain [7], was also mostly associated to the CF patient cohort (see Figure 2). The identified correlation is supported by previous studies and the mechanism of action of strains with this AT-genotype on human blood cells has been already elucidated C59 wnt [22]. 3C2A was exclusively CF-associated, but it has been previously described as a frequent AT-type both in CF and non-CF patients [7]. Among the multi-isolate AT-genotypes, only one novel one(i.e. 0C2E) out of 3 novel genotypes was identified also in CF patients, although in 50% of the cases only. An investigation Non-specific serine/threonine protein kinase on co-infections events, taking in account the 124-independent isolates collection, revealed that almost 40% of
our CF patients were colonized by more than one AT-genotype, among which the most frequent were again 4B9A and EC2A but also the 2C22 AT-types (see Figure 4). Interestingly, isolates typed as 4B9A and EC2A, when present, were always co-colonizers (i.e. patients P11, P12, P13). According to the eBURST analysis shown in Figure 3, these two AT-genotypes showed low SNP-profile similarity and were classified as unrelated by the eBURST analysis of our collection being part of different cluster of clones. Looking at the accessory-genome markers, the isolates with 4B9A and EC2A AT-type presented an identical pattern of virulence genes/gene islands (see Additional file 1). Among the 5 patients infected by more than one AT-genotype, only an individual patient (P12) was co-infected by two strains from the same cluster of clones, with EC2A and 2C22 AT-genotype.