Nature 2006, 442:282 CrossRef 15 Schedin F, Geim A, Morozov
<

Nature 2006, 442:282.CrossRef 15. Schedin F, Geim A, Morozov

S, Hill E, Blake P, Katsnelson M, Novoselov K: Detection of individual gas molecules adsorbed on graphene. Nat Mat 2007, 6:652.CrossRef 16. Rosales L, Pacheco M, Barticevic Z, Latgé A, Orellana P: Transport properties of graphene nanoribbons with side-attached organic molecules. Nanotechnology 2008, 19:065402.CrossRef 17. Rosales L, Pacheco M, Barticevic Z, Latgé A, Orellana P: Conductance gaps in graphene ribbons designed by molecular aggregations. Nanotechnology 2009, 20:095705.CrossRef 18. Schurtenberger E, Molitor F, Gttinger J, Ihn T, Ensslin K: Tunable graphene single electron transistor. Nano Lett 2378, 8:2008. 19. Zhang ZZ, Wu ZH, Chang K, Peteers F M: Resonant tunneling through S- and U-shaped graphene nanoribbons. Nanotechnology 2009, 20:415203.CrossRef 20. Wu ZH, Zhang ZZ, Chang K, Peteers FM: Quantum tunneling through graphene nanorings. Nanotechnology 2010, 21:185201.CrossRef MK-8669 mouse 21. Smirnov AZD3965 ic50 D, Schmidt H, Haug RJ: Aharonov-Bohm effect in an electron-hole graphene ring system. Appl Phys Lett 2012, 100:203114.CrossRef 22. Russo S, Oostinga

JB, Wehenkel D, Heersche HB, Sobhani SS, Vandersypen LMK, Morpurgo AF: Observation of Aharonov-Bohm conductance oscillations in a graphene ring. Phys Rev B 2008, 72:085413.CrossRef 23. Huefner M, Molitor F, Jacobsen A, Pioda A, Stampfer C, Ensslin K, Ihn T: The Aharonov-Bohm effect in a side-gated graphene ring. New J Phys 2010, 12:043054.CrossRef 24. Son YW, Cohen ML, Louie SG: NADPH-cytochrome-c2 reductase Energy gaps in graphene nanoribbons. Phys Rev Lett 2006, 97:216803.CrossRef 25. Nardelli M: Electronic transport in extended systems: application to carbon nanotubes. Phys Rev B 1999, 60:7828.CrossRef 26. Datta S: Electronic Transport Properties of Mersoscopic Systems. Cambridge:

Cambridge University Press; 1995. 27. Nakada K, Fujita M, Dresselhaus G, Dresselhaus MS: Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys Rev B 1996, 54:17954.CrossRef 28. Ritter C, Makler SS, Latgé A: Energy-gap modulations of graphene ribbons under external fields: a theoretical study. Phys Rev B 2008, 77:195443. A published erratum appears in Phys Rev B 2010, 82:089903(E)CrossRef 29. Wakabayashi K, Fujita M, Ajiki H, Sigrist M: Electronic and magnetic properties of nanographite ribbons. Phys Rev B 1999, 59:8271.CrossRef 30. Nemec N, Cuniberti G: Hofstadter butterflies of carbon nanotubes: pseudofractality of the magnetoelectronic spectrum. Phys Rev B 2006, 74:165411.CrossRef 31. Rocha CG, Latgé A, Chico L: Metallic carbon nanotube quantum dots under magnetic fields. Phys Rev B 2005, 72:085419.CrossRef 32. Wakabayashi K: Electronic transport properties of nanographite ribbon junctions. Phys Rev B 2001, 64:125428.CrossRef 33. González JW, Rosales L, Pacheco M: Resonant states in heterostructures of graphene nanoribbons.

Comments are closed.