PubMedCrossRef 18 Jeggo P, Lobrich M: Radiation-induced DNA dama

PubMedCrossRef 18. Jeggo P, Lobrich M: Radiation-induced DNA damage responses. Radiat

Prot Dosim 2006, 122:124–127.CrossRef 19. Chistiakov DA, Voronova NV, Chistiakov PA: Genetic variations in DNA repair genes, radiosensitivity to cancer and susceptibility to acute tissue reactions in radiotherapy-treated cancer patients. Acta Oncologica 2008, 47:809–824.PubMedCrossRef 20. Moullan N, Cox DG, Angele S, Romestaing P, Gerard JP, Hall J: Polymorphisms in the DNA Repair Gene XRCC1, AZD1480 in vitro Breast Cancer Risk, and Response to Radiotherapy. Cancer Epidemiol Biomarkers Prev 2003, 12:1168–1174.PubMed 21. Mango Mangoni M, Bisanzi S, Carozzi F, Sani C, Biti G, Livi L, Barletta E, Costantini AS, Gorini G: Association between genetic polymorphisms in the XRCC1, XRCC3, XPD, GSTM1, GSTT1, MSH2, MLH1, MSH3, and MGMT genes and radiosensitivity in breast cancer patients. Int J Radiat Oncol Biol Phys 2011, 81:52–58.CrossRef www.selleckchem.com/products/nutlin-3a.html 22. Popanda O, Tan XL, Ambrosone CB, Kropp S, PCI-32765 in vivo Helmbold I, von Fournier D, Haase W, Sautter-Bihl ML, Wenz F, Schmezer P, Chang-Claude

J: Genetic polymorphisms in the DNA double-strand break repair genes XRCC3, XRCC2, and NBS1 are not associated with acute side effects of radiotherapy in breast cancer patients. Cancer Epidemiol Biomarkers Prev 2006, 15:1048–1050.PubMedCrossRef 23. Chang-Claude J, Popanda O, Tan XL, Kropp S, Helmbold I, von Fournier D, Haase W, Sautter-Bihl ML, Wenz F, Schmezer P, Ambrosone CB: Association between polymorphisms in the DNA repair genes,XRCC1, APE1, and XPD and acute side effects of radiotherapy in breast cancer AMP deaminase patients. Clin Cancer Res 2005, 11:4802–4809.PubMedCrossRef 24. Travis EL: Genetic susceptibility to late normal tissue injury. Semin Radiat Oncol 2007, 17:14.CrossRef 25. Morgan JL, Holcomb TM, Morrissey RW: Radiation reaction in ataxia telangiectasia. Am J Dis Child 1968, 116:557–558.PubMed 26. Iaccarino G, Pinnaro P, Landoni V, Marzi S, Soriani A, Giordano C, Arcangeli S, Benassi M, Arcangeli G: Single fraction partial breast irradiation in prone position. J Exp Clin Cancer Res 2007, 26:543–552.PubMed 27. Bruzzaniti V, Abate A, Pedrini M, Benassi M, Strigari L: IsoBED: a tool for automatic calculation of biologically

equivalent fractionation schedules in radiotherapy using IMRT with a simultaneous integrated boost (SIB) technique. J Exp Clin Cancer Res 2011, 30:52.PubMedCrossRef 28. Creton G, Benassi M, Di Staso M, Ingrosso G, Giubilei C, Strigari L: The time factor in oncology: consequences on tumour volume and therapeutic planning. J Exp Clin Cancer Res 2006, 25:557–573.PubMed 29. Cividalli A, Creton G, Ceciarelli F, Strigari L, Tirindelli Danesi D, Benassi M: Influence of time interval between surgery and radiotherapy on tumor regrowth. J Exp Clin Cancer Res 2005, 24:109–116.PubMed 30. Strigari L, D’Andrea M, Abate A, Benassi M: A heterogeneous dose distribution in simultaneous integrated boost: the role of the clonogenic cell density on the tumor control probability.

Significant clinical factors associated with LVH were

CB-5083 order Significant clinical factors associated with LVH were systolic BP (OR 1.23; 95 % CI 1.134–1.323; P < 0.001), diastolic BP (OR 1.16; 95 % CI 1.031–1.306; P = 0.014), pulse pressure (OR 1.25; 95 % CI 1.137–1.380; P < 0.001), eGFR (OR 0.98; 95 % CI 0.968–0.9991; P = 0.0004; Fig. 2a, b), BMI (OR 1.15; 95 % CI 1.110–1.199; P < 0.0001; Fig. 3a, b), serum uric acid (OR 1.10; 95 % CI 1.002–1.202; www.selleckchem.com/products/Lapatinib-Ditosylate.html P = 0.046), ACR (OR 1.55; 95 % CI 1.267–1.905; P < 0.001),

A1C (OR 1.17; 95 % CI 1.011–1.345; P = 0.035), serum levels of iPTH (OR 1.00; 95 % CI 1.001–1.005; P < 0.001), HDL cholesterol (OR 0.98; 95 % CI 0.971–0.989; P < 0.001), triglyceride (OR 1.00; 95 % CI 1.001–1.003; P < 0.001), calcium (OR 0.56; 95 % CI 0.431–0.720; P < 0.001) and phosphorus (OR 1.23; 95 % CI 1.004–1.515; P = 0.046), and prescription of antihypertensive agents (OR 3.51; 95 % CI 1.601–7.685; P = 0.002). Table 5 Factors associated with LVMI (univariate logistic regression analysis) Variables OR 95 % CI P value Sex (female) 1.78 1.308–2.416 <0.001 Age (years) 1.00 0.990–1.015 0.690 Smoking 0.69 0.444–1.064 0.092 Menopause 1.269 0.858–1.877 0.233 Complications  Diabetes 1.66 1.254–2.186 <0.001  Dyslipidemia

1.43 1.007–2.040 0.045  Hypertension 3.73 1.487–9.376 0.005 Medical history  Hypertension 0.91 0.648–1.281 HKI-272 solubility dmso 0.592  Cardiovascular disease 0.72 0.518–1.013 0.060   MI 0.79 0.395–1.599 0.519   Angina 0.70 0.419–1.170 0.174   Congestive heart failure 0.40 0.142–1.146 0.088   ASO 1.21 0.562–2.609 0.625   Stroke 0.78 0.478–1.257 0.302 Blood pressure (mmHg)  Systolic 1.23 1.134–1.323 <0.001  Diastolic 1.16 1.031–1.306

0.014 Pulse pressure (mmHg) 1.25 1.137–1.380 <0.001 BMI (kg/m2) 1.15 1.110–1.199 <0.001 eGFR (ml/min/1.73 m2) 0.98 0.968–0.991 <0.001 Uric acid (mg/dl) 1.10 1.002–1.202 0.046 Urinary albumin (mg/gCr) 1.55 1.267–1.905 <0.001 A1C (%) 1.17 1.011–1.345 0.035 Hemoglobin (g/dl) 0.98 0.905–1.052 0.520 iPTH (pg/ml) 1.00 1.001–1.005 <0.001 Total chol (mg/dl) 1.00 0.994–1.001 0.163 Non-HDL chol (mg/dl) 1.00 0.997–1.004 0.743 LDL chol (mg/dl) 1.00 0.997–1.006 0.545 HDL chol (mg/dl) 0.98 0.971–0.989 <0.001 Triglyceride (mg/dl) 1.00 1.001–1.003 <0.001 Calcium (mg/dl) 0.56 0.431–0.720 <0.001 Phosphorus (mg/dl) 1.23 1.004–1.515 0.046 Medication  Antihypertensive agent 3.51 1.601–7.685 0.002  Statin 0.82 0.607–1.098 0.179  ESA 1.12 0.726–1.732 0.605  Phosphate Meloxicam binder 1.06 0.476–2.348 0.892  Vitamin D 0.80 0.438–1.444 0.452 OR odds ratio, CI confidence interval, ESA erythropoiesis-stimulating agent Fig. 2 Relationship between estimated glomerular filtration rate (eGFR) and left ventricular mass index (LVMI) of patients with stage 3–5 CKD. a female; b male Fig. 3 Relationship between body mass index (BMI) and left ventricular mass index (LVMI) of patients with stage 3–5 CKD. a Female; b male As shown in Table 6, the variables independently associated with LVH were past history of CVD (OR 0.574; 95 % CI 0.360–0.916; P = 0.

Microbiol Mol Biol Rev 63:106–127PubMed Peña KL, Castel SE, de Ar

Microbiol Mol Biol Rev 63:106–127PubMed Peña KL, Castel SE, de Araujo C, Espie GS, Kimber MS (2010) Structural basis of the oxidative activation of the carboxysomal gamma-carbonic anhydrase, CcmM. Proc Natl Acad Sci USA 107:2455–2460PubMedCrossRef Price GD, Coleman JR, Badger MR (1992) Association of carbonic MG-132 anhydrase activity with carboxysomes Transmembrane Transporters activator isolated from the cyanobacterium Synechococcus PCC7942. Plant Physiol 100:784–793PubMedCrossRef Sagermann M, Ohtaki A, Nikolakakis

K (2009) Crystal structure of the EutL shell protein of the ethanolamine ammonia lyase microcompartment. Proc Natl Acad Sci USA 106:8883–8887PubMedCrossRef Sawaya MR, Cannon GC, Heinhorst S, Tanaka S, Williams EB, Yeates TO, Kerfeld CA (2006) The structure of beta-carbonic anhydrase from the carboxysomal shell reveals a distinct subclass with one active site for the price of two. J Biol Chem 281:7546–7555PubMedCrossRef Schmid MF, Paredes AM, Khant HA, Soyer F, Aldrich HC, Chiu W, Shively JM (2006) Structure of Halothiobacillus neapolitanus carboxysomes by

cryo-electron tomography. J Mol Biol 364:526–535PubMedCrossRef Schuster-Bockler B, Schultz J, Rahmann S (2004) HMM logos for visualization of protein families. BMC Bioinform 5:7CrossRef Shively JM, Ball F, Brown DH, Saunders RE (1973) Functional organelles in prokaryotes: polyhedral inclusions (carboxysomes) of Thiobacillus neapolitanus. Science 182:584–586PubMedCrossRef Smart OS, Neduvelil JG, Wang X, Wallace BA, Sansom MS (1996) HOLE: a program for the analysis of the selleckchem pore dimensions of ion channel structural models. J Mol Graph 14:354–360, 376PubMedCrossRef So AK-C, John-McKay M, Espie GS (2002) Characterization

of a mutant lacking carboxysomal carbonic anhydrase from the cyanobacterium Synechocystis PCC6803. Planta 214:456–467PubMedCrossRef Tabita FR (1999) Microbial ribulose 1, 5-bisphosphate carboxylase/oxygenase: a different perspective. Photosynth Res 60:1–28CrossRef Tanaka S, Kerfeld CA, Sawaya MR, Cai F, Heinhorst S, Cannon GC, Yeates TO (2008) Atomic-level models of the bacterial carboxysome shell. Science 319:1083–1086PubMedCrossRef Tanaka S, Sawaya MR, Phillips M, Yeates TO (2009) Insights from multiple structures of the shell proteins from the very beta-carboxysome. Protein Sci 18:108–120PubMed Tripp HJ, Bench SR, Turk KA, Foster RA, Desany BA, Niazi F, Affourtit JP, Zehr JP (2010) Metabolic streamlining in an open-ocean nitrogen-fixing cyanobacterium. Nature 464:90–94PubMedCrossRef Tsai Y, Sawaya MR, Cannon GC, Cai F, Williams EB, Heinhorst S, Kerfeld CA, Yeates TO (2007) Structural analysis of CsoS1A and the protein shell of the Halothiobacillus neapolitanus carboxysome. PLoS Biol 5:e144PubMedCrossRef Tsai Y, Sawaya MR, Yeates TO (2009) Analysis of lattice-translocation disorder in the layered hexagonal structure of carboxysome shell protein CsoS1C. Acta Crystallogr D 65:980–988PubMedCrossRef Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority.